Time Series Clustering Based on Singularity
نویسندگان
چکیده
منابع مشابه
A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملTime series clustering based on forecast densities
A new clustering method for time series is proposed, based on the full probability density of the forecasts. First, a resampling method combined with a nonparametric kernel estimator provides estimates of the forecast densities. A measure of discrepancy is then defined between these estimates and the resulting dissimilarity matrix is used to carry out the required cluster analysis. Applications...
متن کاملOn clustering fMRI time series.
Analysis of fMRI time series is often performed by extracting one or more parameters for the individual voxels. Methods based, e.g., on various statistical tests are then used to yield parameters corresponding to probability of activation or activation strength. However, these methods do not indicate whether sets of voxels are activated in a similar way or in different ways. Typically, delays b...
متن کاملModel based Clustering of Multiple Time Series
We propose to use the attractiveness of pooling relatively short time series that display similar dynamics, but without restricting to pooling all into one group. We suggest to estimate the appropriate grouping of time series simultaneously along with the group-specific model parameters. We cast estimation into the Bayesian framework and use Markov chain Monte Carlo simulation methods. We discu...
متن کاملExtreme-based Clustering of Environmental Time Series
This work provides an up-to-date review on clustering techniques to classify time series on the basis of their corresponding extremal properties with a bias towards describing the authors’ ongoing work. Applications to clustering time series of sea-level and daily mean temperature are presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computers Communications & Control
سال: 2017
ISSN: 1841-9836,1841-9836
DOI: 10.15837/ijccc.2017.6.3002